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ABSTRACT

This study explores the impact of a turbulent scattering mechanism, akin to those influencing solar
and galactic cosmic rays propagating in the interplanetary medium, on the population of suprathermal
electrons in the solar wind. We employ a Fokker-Planck equation to model the radial evolution of
electron pitch angle distributions under the action of magnetic focusing, which moves the electrons
away from isotropy, and of a di↵usion process that tends to bring them back to it.
We compare the steady-state solutions of this Fokker-Planck equation with data obtained from the

Solar Orbiter and Parker Solar Probe missions and find a remarkable agreement, varying the turbulent
mean free path as the sole free parameter in our model. The obtained mean free paths are of the order
of the astronomical unit, and display weak dependence on electron energy within the 100 eV to 1 keV
range. This value is notably lower than Coulomb collision estimates but aligns well with observed
mean free paths of low-rigidity solar energetic particles events.
The strong agreement between our model and observations leads us to conclude that the hypothesis

of turbulent scattering at work on electrons at all heliospheric distances is justified. We discuss several
implications, notably the existence of a low Knudsen number region at large distances from the Sun,
which o↵ers a natural explanation for the presence of an isotropic “halo” component at all distances
from the Sun – electrons being isotropized in this distant region before travelling back into the inner
part of the interplanetary medium.

Keywords: Solar Wind (1534) — Solar energetic particles (1491) — Space plasmas (1544) — Inter-
planetary physics (827)

1. INTRODUCTION

Electron velocities measured in the solar wind are distributed into a low energy, nearly Maxwellian thermal core,
which typically contributes to more than 95% of the solar wind’s electron density (Stverak et al. 2009), and a more
tenuous, higher energy part which exhibits non-Mawellian tails and constitutes the suprathermal component of the
velocity distribution function (see Fig.7 of this paper for an illustration).
Electrons with energies between around 100 eV to 1 keV present a quite important anisotropy, and are usually

described as the sum of an isotropic population, called the halo, and a magnetic field aligned component, called the
strahl. This pitch angle structure has been extensively studied in the literature. Its appears to become angularly
broader with increasing distance to the Sun, which is naturally interpreted as the signature of a (or several) scattering
mechanism acting on the electrons (Hammond et al. 1996). At a given distance, its angular width does not seem to be
a strong function of the energy (Graham et al. 2017), although some correlation may appear, and the precise energy
dependence of the strahl angular width may depend also on other parameters, like the local plasma � (Berčič et al.
2019). At energies greater than around 1 or 2 keV, the strahl disappears and gives way to an essentially isotropic
distribution, generally referred to as the super-halo (Lin 1998; Wang et al. 2012).
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The purpose of this paper is to demonstrate that the suprathermals pitch angle distributions observed in the
solar wind can be convincingly reproduced on the basis of a simple transport model, under the assumption that
an isotropization mechanism acts on the electrons on a typical scale – that we shall call the turbulent scattering mean
free path �turb, in order to di↵erentiate it from the Coulomb collision mean free path – that does not depend on
the distance from the Sun. Such an assumption is commonly made for the study of the propagation of high energy
particles in the interplanetary medium, from Jokipii (1971) to more recent references such as Dröge et al. (2018); Bian
& Emslie (2019); Bian & Emslie (2020), and makes it possible to successfully reproduce the observed di↵usion profiles
and time-delay distributions of solar energetic particles events.
The action of such a mechanism at lower energies appears necessary to explain the observed pitch angle profiles.

Indeed, well identified mechanisms exist that should drive suprathermals to anisotropy levels that exceed by far
those actually observed. Among these mechanisms, the most critical is the focusing e↵ect due to the interplanetary
magnetic field gradient: neglecting all other e↵ects, the adiabatic conservation of the magnetic moment for an isotropic
distribution at, say, ⇠ 5 solar radii, would imply that all charged particles observed at 1 AU are collimated within
⇠ 2� of the magnetic field direction. Reminding that the Coulomb collision mean free path of 100 eV �1 keV electrons
at 1 AU is of the order of 102 � 104 AU, and therefore much larger than any gradient scale of the system, we should
logically expect suprathermals to form a very collimated beam in most of the interplanetary medium (Owens et al.
2008) (assuming that the suprathermals are indeed coming from the Sun).
Another, more generic, argument, is that it is hardly conceivable that a mechanism observed to act on ⇠keV solar

flare electrons (Dröge et al. 2018) would suddenly lose all e�ciency when crossing the 1 keV limit.
In this paper, we shall therefore assume the existence of an isotropization mechanism that acts on rather short (⇠

AU) lengthscales at solar wind suprathermal energies, and investigate the consequence of this assumption. In Section
2, we introduce the transport equation for the electron pitch angle distribution in the solar wind, and discuss the
properties of the strahl-halo structure in terms of steady-state solutions of this equation. In Section 3, we compare
the solutions of the transport equation to observations from the Parker Solar Probe and Solar Orbiter spacecraft. By
doing so, we demonstrate a compelling agreement between the observations and the model’s predictions, determine
the mean free path characterizing the isotropization process, and its dependence on the electron energy. Section 4
concludes the paper by a discussion of some implications and of the possible nature of the scattering process.

2. EVOLUTION OF ELECTRONS PITCH ANGLE IN THE SOLAR WIND

2.1. Transport equation

We describe the evolution of the gyrophase-averaged electron phase space distribution function f(v, µ, r) by the
“focused transport equation” introduced by Skilling (1971) to describe cosmic ray di↵usion, extended by Isenberg
(1997) to the context of solar wind pick-up ions, and extensively discussed by Zank (2014) or le Roux & Webb (2012).
We use the formalism of the latter reference:

@f

@t
+ (V+ µvb) ·rf +

⌧
dv

dt

�

�

@f

@v
+

⌧
dµ

dt

�

�

@f

@µ
= ⌫L(f). (1)

In this equation, b the local unit vector along the magnetic field, V the solar wind velocity field, v is the modulus of
an electron velocity vector and µ = v · b/v = cos ✓ its pitch angle cosine. The distribution function is defined such
that the number of particle in an infinitesimal phase space volume is dN = f(v, µ, r)drdv, with dv = 2⇡v2dµdv. The
phase-averaged pitch angle evolution is given by
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where Ek it the electric field component parallel to the magnetic field line, and e > 0 and m the electron charge and
mass. The phase-averaged velocity modulus evolution is given by
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Finally, the right hand term of equation (1) is an operator describing the isotropic di↵usion of the electron velocity in
pitch angle over a timescale ⌫�1, with L the Lorentz di↵usion operator L(f) = @µ(1� µ2)/2@µf (see e.g. Helander &
Sigmar (2005)).
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Solving equation (1) is obviously a complicated task, but we’ll argue that only a few of these terms play a significant
role in the evolution of the suprathermal pitch angle distribution function. For this we look at the ordering of the
di↵erent terms appearing in eq.(2) and eq.(3). The first term of eq.(2) describes the focusing of electrons along a
magnetic field line, and is of the order of ⌫focus ⇠ v/L, where L is a typical gradient length of the system (here,
strictly speaking, of the magnetic field, but we will consider the gradient scales of all relevant quantities to have the
same order of magnitude). The various terms involving V describe e↵ects related to the action of inertial forces on
the electrons (the velocity vectors of which are defined in the solar wind frame, which is non-galilean). Their order of
magnitude are ⌫inert ⇠ V/L or ⇠ (V/v)V/L. Finally the last terms of eqs.(2)-(3) describe the e↵ect of the parallel
electric field on the electrons. The interplanetary parallel electric field is Ek ⇠ kTe/eL, where Te is the electron
temperature and L the typical length of the electron pressure gradient. Therefore the order of magnitude of these
terms is ⌫E ⇠ kTe/mvL. In the following of this paper we focus on the evolution of the suprathermal electrons, which
by definition fulfill the condition v � vthe � V . For this population, ⌫inert/⌫focus = O(V/v) or O(V 2/v2), which are
both small compared to one, and ⌫E/⌫focus = O(kTe/mv2), which is also small compared to one: the inertial forces
and the electric field act on the suprathermal part of the velocity distribution function on much longer timescales
than the magnetic focusing does. This analysis shows that the evolution of the distribution of the modulus of the
suprathermal electrons velocity vector v (which involves only terms ⇠ ⌫inert and ⇠ ⌫E) occurs on a quite longer
timescale than that of the distribution of the pitch angle distribution. Keeping only leading order terms in eq.(1), we
see that the evolution of the latter is governed by
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@f

@s
+

(1� µ2)v

2LB(s)

@f

@µ
=

@

@µ

(1� µ2)⌫

2

@f

@µ
(4)

where s is the curvilinear coordinate along the field line and LB(s) = �(d lnB/ds)�1 is the characteristic length of
the magnetic field gradient along the field line. This equation, which will be used in the rest of the paper, describes
the evolution of an electron with a single e↵ective degree of freedom (µ, s), bound to a field line, and subject to two
competing physical e↵ects: magnetic focusing acting on a typical length LB , and di↵usion in pitch angle, acting on
a typical length � = v/⌫, that we shall call after the isotropization mean free path. Both of these processes act at
constant velocity vector modulus, and from now on, v will only have the role of a constant parameter. We note that,
by neglecting everywhere the solar wind speed V compared to the electron speed v, we place ourselves in a “static
field line approximation”, in which the time-dependent nature of field line due to its advection by the solar wind is
completely neglected. This is convenient because it provides a one-to-one, time independent correspondence between
the curvilinear coordinate s and the heliocentric distance r (cf. Appendix B, eq.(B4)), but some e↵ects due to the
proper motion of the field line, especially at distances far from the Sun, or involving the very long term history of
particles, will be absent from the present treatment.
The Knudsen number Kn(s, v) = �(s, v)/LB(s) is the dimensionless parameter that locally measures the relative

importance of the focusing and the di↵usion e↵ects. For small values of Kn, the particles will be di↵used and isotropized
before they can sense much change in the magnetic field (and therefore experience any perceptible focusing): the
electrons distribution are in this case expected to behave locally (i.e. the distribution at coordinate s will be determined
by the value of Kn at s). At the opposite, large values of Kn will imply that that the electron trajectories are essentially
deterministic, and that they can sense large changes in LB before undergoing any deflection from the isotropization
process. We expect, in this case, the electrons to behave in an essentially non-local way, the pitch angle distribution at
a given coordinate s not being determined by the local values of � and LB , but by the whole profile of these quantities
“from zero to infinity”.

2.2. Steady-state solution in an exponential field, or small Knudsen number limit.

As already noted by Roelof (1969), an exact steady state (i.e. @tf = 0) solution to eq.(4) can easily be found if both
� and LB are independent of the position s – and the magnetic field modulus is therefore / exp(�s/LB). The phase
space distribution is in this case

f(µ, s) = Ae�s/LBeKnµ, (5)

where A is an integration constant. In the following of this paper, and in particular for comparison with observations, we
shall be interested in the evolution of the normalized pitch angle distributions f̄(✓), defined such that the probability
dp of observing an electron with pitch angle between ✓ and ✓ + d✓ is dp = f̄(✓) sin ✓d✓. According to eq.(5), this
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distribution is independent of s and given by

f̄(✓) =
KneKn cos ✓

2 sinhKn
, (6)

with ✓ between 0 and ⇡.
Of course, this solution is not precisely what we are looking for, since we know that the solar wind magnetic field

profile is not exponential. However, it is interesting in that it provides a clear interpretation of the strahl/halo as a
steady state structure resulting from a competition between magnetic focusing and di↵usion. The outcome of this
competition is, in this particular case, solely determined by the local value of the Knudsen number: if Kn ⌧ 1, di↵usion
dominates, eq.(6) simplifies into f̄(✓) ⇠ 1/2 and the velocity distribution is essentially isotropic. At the opposite, when
Kn ⇠ 1 or larger, the di↵usion is not fast enough to cancel the focusing e↵ect, which manifests as an important excess
of electrons with field-aligned velocities, that one may call a strahl. Importantly, the distribution (6) does not depend
on any boundary condition at the Sun level: the strahl emerges here as a statistical feature, stemming from the fact
that an electron, undergoing a random walk in pitch angle space, spend in average more time field-aligned than not,
because of the focusing e↵ect.
Apart from its interest for providing us with some intuitive picture of the origin of the strahl/halo structure, the

solution (6) is important in that it gives an analytical expression for the steady-state distribution valid in an arbitrary
magnetic field profile, provided that the Knudsen number is small enough. Still following Roelof (1969), we can
estimate (6) to hold whenever dKn/d(s/�) ⌧ 1, or to reformulate it as an upper limit on the Knudsen number,

Kn ⌧ |dLB/ds|
�1/2. (7)

This inequality can be seen as a condition for a local behaviour to hold, and eq.(6) as an expression for the pitch angle
distribution valid when this locality condition is fulfilled. In the case of interest for the interplanetary medium, this
condition is essentially equivalent to Kn ⌧ 1, as discussed in Appendix B.

2.3. Steady-state solution in a Parker spiral field

In this section, as in the previous, we consider the situation in which � is independent of s, but we now look at
a situation more directly relevant to solar wind electrons, with a magnetic field following a Parker spiral. B is then
expressed in a polar coordinate system centered on the Sun as

B = const.

✓
ur

r2
+

u�

r⇤r

◆
(8)

where const. is a constant depending on the boundary conditions, which determines the amplitude of the field. Since we
are interested only in its gradient scale, we let it unspecified. The characteristic length of the spiral is r⇤ = V sin⇥/!,
where V is solar wind’s velocity, assumed radial and constant in modulus, ⇥ the solar co-latitude and ! the Sun’s
rotation angular frequency.
There is no straightforward way to obtain a steady-state analytical solution to the transport equation (4) in this

case. Therefore, we integrated the equation numerically, using a pseudo-particle Monte-Carlo method described in
Appendix A. Figs.1 and 2 show the result of this integration for parameters r⇤ = 1 AU and � = 0.6 AU. The boundary
condition was set by imposing an isotropic normalized distribution f̄(✓) = 1 for ✓ 2 [0,⇡/2] (and 0 elsewhere), at
a distance s0 = 0.01 AU from the Sun. The distributions are obtained by binning the pitch angles and positions
of N = 106 pseudo-particles on a N✓ ⇥ Ns = 30 ⇥ 100 grid, with distances ranging from 0 to 3 AU. Fig.2 shows
normalized pitch angle distributions at four di↵erent distances, together with the local solutions (6), that one expects
to be valid when Kn is small enough. The distributions are plotted as a function of the “outward pitch angle”, that is,
the electron pitch angle defined with respect to a field line oriented outward from the Sun (since the transport model
involves averaging on the electron gyro-motion, the orientation of the field line does not play any explicit role). So, an
electron having a 0� (resp. 180�) outward pitch angle has a velocity vector parallel to the field line, pointing in the
direction outward from (resp. toward) the Sun.
As a first general comment on these figures, we can see that the strahl-halo picture commonly observed in the solar

wind is well reproduced, with an excess of electrons having field-aligned velocity vectors directed outward from the
Sun. The strahl pitch angle width, as well as the fraction of isotropized electrons (the “halo electrons”), both increase
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Figure 1. Phase space density of electrons f(✓, s), binned by �✓ ⇥ �s = 6� ⇥ 0.03 AU elements. f(✓, s) was obtained by
numerical integration of the transport equation (4), with � = 0.6 AU and LB(s) calculated from a Parker spiral with r⇤ = 1
AU. The color scale goes from dark to light (blue to yellow). In order for the figure to be easily readable, the distribution has
been rescaled so that its maximum in each distance bin is equal to 1. The bottom panel shows the Knudsen number, and the
horizontal dashed line Kn = 1.

with increasing distance from the Sun. The steady-state solution to the transport equation 4 with constant � therefore
reproduces, at least qualitatively (we shall see in Section 3 that the agreement is also remarkably quantitative), the
main features of the strahl/halo radial evolution reported in previous observational papers. Importantly, we note that
the results presented in Figs.1 and 2 are essentially independent of the boundary condition chosen at s0 = 0.01 AU.
Simulations using various boundary conditions (for instance using f̄(✓, s0) = �(✓ � ✓0) with various values of ✓0) were
performed, and gave as a result steady-state phase space distributions indistinguishable from the one presented in this
section. The reason for this is discussed below.

To understand how the pitch angle distributions are shaped, we note that, since the mean free path � is here inde-
pendent of s while LB(s) is an increasing function of s, the Knudsen number decreases with distance to the Sun, as can
be seen on the bottom panel of Fig.1 (cf. Appendix B for the explicit calculations). Far enough away from the Sun,
Kn(s) ' �/2s (or as a function of r, Kn(r) ' �r⇤/r2), and one necessarily reaches a distance where Kn is small enough
for the locality condition (7) to be fulfilled. We can see on the bottom panel of Fig.2 that, indeed, the local solution is
a good approximation to the numerical solution at a distance r ' 2 AU, at which Kn ' 0.16. The three other panels
show pitch angle distributions at closer distances from the Sun, were the values of Kn are larger. These distributions
do not fit to the local solution, as expected: they are clearly the result of non-local phenomena. This non-locality is
manifested by the presence of an isotropized component even at close distances from the Sun, where it is clear that the
di↵usion process did not have the time to scatter the electrons directly coming from the Sun by a large angle. This can
be seen from a simple order of magnitude estimate: the variation of pitch angle due to the local action of the di↵usion
process on an electron traveling a distance s from the Sun is �✓ ⇠

p
s/�, which is very small if s ⌧ � (and this order

of magnitude does not even take into account the e↵ect of magnetic focusing, which will further reduce the spread in ✓).
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Figure 2. The histograms show normalized pitch angle distributions f̄(✓) at di↵erent distances from the Sun. The parameters
are the same as for Fig.1. The red curves show the local solution (6) calculated for the local value of the Knudsen number
Kn = �/LB(s) (indicated on the top right corner of each panel).

Fig.3 presents the trajectory of a pseudo-particle, and sheds some light on the origin of the strahl and halo compo-
nents, as well as on the reason why the phase space distribution does not depend on the boundary condition in the
corona. First, notice that close to the Sun the focusing length is very small, and the Knudsen number consequently
very high (⇠ 200): in this region, the scattering of electrons can be, to a good approximation, neglected. Therefore
their dynamics is essentially determined by the focusing e↵ect, that occurs on a typical length LB ' s/2 ' 0.005 AU
(the latter numerical estimate at position s0). After a few LB , the electrons are well aligned with the magnetic field
direction, and a very collimated beam is already formed at a few solar radii from the Sun, regardless of how the initial
condition is chosen at s0. The red line on Fig.3 shows the deterministic trajectory µ(s) that can be obtained from
eq.(4) (or equivalently eqs.(A2)-(A3)) in the limit ⌫ ! 0,

µ(s) =

s

1� (1� µ(s0)2)
B(s0)

B(s)
. (9)
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Figure 3. Trajectory of a 600 eV electron in the (µ, s) phase space (top panel) and as a function of time (bottom panel),
calculated over a 100 ⌫�1 time interval. The mean free path is � = 0.6 AU. The red line on the top panel shows the deterministic
trajectory of the electron due to magnetic focusing. The shaded region corresponds to distances from the Sun where Kn < 1,
the color scale indicating the value of Kn (from yellow ⇠ 1 to purple ⇠ 0.1).

This trajectory is closely followed by the electrons leaving the Sun, and illustrates both how the strahl is formed by
magnetic focusing of electrons streaming out of the Sun, and why the distributions at distances larger than a few solar
radii do not depend on the boundary condition at s0.
So, the first part of the trajectory after the electrons are released from the corona basically consists in focusing,

and then free streaming of electrons along the field line in a weakly scattering, high Kn environment: electrons in
this part of their history constitute the strahl. However, Fig.3 also illustrates that the free-streaming motion changes
into a more chaotic one when the electron enters the region of small Knudsen numbers. There, the velocity vector
of the particle is isotropized, and the electron follows a random walk with a small drift outward from the Sun: the
distribution’s behaviour is here essentially local. The origin of the halo at intermediate distances, where the Knudsen
number is high, is well illustrated by the portions of trajectory around ⌫t ' 5 and ⌫t ' 80: here the electron, after
having been deflected at a position of rather low Kn, has acquired a negative value of µ. As a consequence, it travels
in the direction of the Sun and now encounters a magnetic field intensity which increases along its way: its parallel
velocity decreases (in absolute value) until the electron gets mirrored back to a positive value of µ. The two successive
mirroring motions at ⌫t ' 80 can quite clearly be seen on the top panel, as a loop in phase space with a mirror position
around s ' 0.15 AU. This provides a picture of the origin of electrons traveling toward the Sun at distances where Kn
is large: these electrons did not came straight out of the Sun, but first travelled to outer heliospheric regions where Kn
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is small. Here they got scattered back into the large Kn region where they are observed. We shall not, in this paper,
go much further than this qualitative description. However, we want to stress this important point: whereas the strahl
is somehow a local component (in the sense that it is determined only by the fields situated between the Sun and the
position where it is observed), the halo observed in the high Kn region is an intrinsically non-local feature, in that its
density is determined by the values taken by the Knudsen number in outer regions, far from the location where it is
observed.

2.4. The e↵ect of Coulomb collisions

In the previous sections we focused on the situation in which the mean free path � ⌘ �turb = v/⌫turb is independent
of the distance from the Sun. But it can be expected, especially close to the Sun where the plasma density is high,
that Coulomb collisions play a role in shaping the distribution function. For instance, their e↵ect on small pitch angle
particles streaming out of the Sun has been studied by Horaites et al. (2017, 2018), showing that they clearly play a
role in determining the strahl angular width.
The aim of this section is to evaluate the e↵ect of competition between Coulomb collisions and a turbulent scattering

mechanism characterised by a mean free path which, as in previous sections, is assumed not to vary with distance.
This study can be made from eq.(4), using the e↵ective scattering frequency ⌫(r) = ⌫turb + ⌫col(r), where ⌫col is the
Coulomb collision frequency. For the results presented in this section, we used for ⌫col the scattering frequency of a
test electron against static targets,

⌫col(r) =
3

2

4⇡n(r)q4e⇤(r)

m2
ev

3
(10)

where qe = e/
p
4⇡✏0 and ⇤ = ln(�D/�L) is the logarithm of the ratio of the Debye to the Landau radius – �2

D =
✏0kTe/ne and �L = 2q2e/mev2 (Rax 2005). Here n(r) is the background plasma density profile, which was taken
according to the density model of Sittler & Guhathakurta (1999). Te(r) is the electron temperature, the variation of
which has little importance given its only appearance in the logarithmic factor ⇤. It was taken as a power law with
index �0.7 (see for instance Issautier et al. (1998)), and a 10 eV value at r = 1 AU. The factor 3/2 accounts for
both ion-electron and electron-electron collisions. Neglecting the thermal motion of the background particles provides
a satisfactory approximation in our case, for only electrons with energies quite larger than the thermal energy are
considered. More complete expressions (e.g. eq.(10) from Scudder & Olbert (1979)) would here only provide marginal
corrections.
Fig.4 shows the evolution of the Knudsen number with radial distance for an electron of energy 150 eV, and a

turbulent scattering mean free path �turb = 1 AU. It is dominated, up to around 0.1 AU, by Coulomb collisions (where
the plasma density is high, and where Knturb ' 2�turb/s � 1), while turbulent scattering dominates from distances
of around 0.3 AU (since the scattering mechanism is assumed independent of the position, Knturb ' �turb/2s ⌧ 1,
cf. Appendix B). The Knudsen number reaches its maximum Kn ⇠ 10 around 0.15 AU. The figure displays three
di↵erent layers at the heliospheric scale: a most internal one, labeled “region I” up to a few 10�2 AUs, where electrons
are strongly scattered by coulomb collisions; a most external one, labeled “region III”, beyond around 1 AU, where
electrons are strongly scattered by the turbulent process; and in between, a “ballistic” layer, where the electron
dynamics is mainly determined by deterministic processes (magnetic focusing in our case), labeled “region II”. Of
course, the boundaries between these regions are vague and depend on the criteria chosen to describe strong di↵usion.
Defining the boundaries as the locations where Kn = Knlim, the position rI of the most internal boundary is solution
of rI⌫col(rI) = 2v/Knlim – it corresponds to the usual exobase of exospheric models, which depends on the electron
energy, as discussed by Brandt & Cassinelli (1966). The location of the external boundary can be found by inverting
eq.(B8). Assuming that this location sIII � r⇤, one would have sIII ' �turb/2Knlim, or, in terms of radial distances
from the Sun, rIII ' (r⇤�turb/Knlim)1/2, which may also depend, through �turb, on the particle’s energy. We finally
note that, as discussed in the previous sections, the local solution eq.(6) should be a good approximation of the pitch
angle distributions in the regions I and III, provided we chose Knlim small enough.
Fig.5 presents results of the numerical integration of the transport equation when Coulomb collisions are taken

into account. In order to provide an easily readable illustration of the e↵ect of Coulomb collisions, we restricted the
representation to the first statistical moment of the normalized distributions

hµ(s)i =

Z 1

�1
f(µ, s)µdµ. (11)
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Figure 4. Knudsen number as a function of the curvilnear coordinate s. The blue curve shows the Knudsen number when
taking into account Coulomb collisions only, the orange curve with turbulent scattering only, and the green curve when both
e↵ect are taken into account. The turbulent mean free path is �turb = 1 AU, the electron energy is 150 eV and the Parker spiral
curvature length r⇤ = 1 AU. Horizontal lines show Kn = 1 (full) and Kn = 0.1 (dashed). The shaded areas delimit the regions
of strong scattering (assuming Knlim = 1, cf. text for details).

The first moment provides a convenient measurement of the anisotropy of the velocity distributions, since, as seen in
previous sections, these distributions are all shaped according to a similar strahl and halo structure – the first order
anisotropy parameter being, strictly speaking, defined as A1 = 3 hµi, see for instance Brüdern, M. et al. (2022). Then,
a value hµi ! 1 indicates a very peaked distribution at small pitch angles, while hµi ! 0 indicates a nearly isotropic
velocity distribution. Fig.5 clearly shows that Coulomb collisions play a role in isotropizing the distribution functions
close to the Sun, especially at relatively low energies. In the first distance bin, corresponding to s = 0.045 AU, values
of hµi are systematically reduced compared to the collisionless case illustrated by the black curve, with the level of
isotropy increasing with decreasing energy, as expected from the energy dependency of the collision frequency. We
note that the e↵ect of Coulomb collisions is, even in the closest bin, nearly negligible for 600 eV electrons, which
appears as a threshold above which collisional e↵ects will not be observable. For lower energy channels, the curves
hµ(s)i all show a maximum, at a location close to the maximum of the Knudsen number (which goes further out
when energy decreases): this is the location at which the velocity distributions are the most peaked – a point that has
recently been identified with Parker Solar Probe observations (Romeo et al. 2022). Once this point has been crossed,
the distributions all converge towards the collisionless solution, showing that at large distances, the e↵ect of Coulomb
collisions near the Sun has been forgotten and that the distributions are shaped only by the turbulent scattering. This
latter point is the most important for the following of this article, where we shall be interested in the experimental
determination of the turbulent scattering mean free path �turb: beyond a certain distance dcol(E) from the Sun, the
electron distributions depend only on �turb, and the results of the numerical integration of eq.(4) in the collisionless
regime can be used to fit the data. dcol(E) has been determined empirically from the curves presented in Fig.5, as the
distance at which the relative di↵erence between collisional and collisionless curves passes below the 3% level. The
obtained points for dcol(E) are plotted on Fig.6, together with an exponential curve that we shall use to interpolate the
value of dcol at any needed energy. This empirical curve is dcol(E) ' 0.5 exp

�
�5.4⇥ 10�4(E � 80)

�
, with E expressed

in eV and dcol in AU.

3. THE TURBULENT SCATTERING MEAN FREE PATH FROM PARKER SOLAR PROBE AND SOLAR
ORBITER OBSERVATIONS

Parker Solar Probe (PSP) (Fox et al. 2016) and Solar Orbiter (SolO) (Müller et al. 2020) are two missions dedicated
to the exploration of the internal heliosphere, with SolO perihelion at around 0.3 AU and PSP’s at around 0.05 AU.
Both are equipped with particle detectors capable of reconstructing electron distribution functions (Kasper et al. 2016;
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Figure 5. Top panel: anisotropy of the velocity distributions as a function of the curvilinear coordinate s, obtained by numerical
integration of eq.(4) when Coulomb collisions are taken into account. The di↵erent curves represent di↵erent energy channels.
Bottom panel: relative di↵erence between evolution curves for which coulomb collisions are taken into account (same colour
code as for Fig.4) and the evolution for which they are not (black curve on the top panel). The horizontal line shows the 3%
level. The turbulent scattering mean free path is �turb = 1 AU.

Owen et al. 2020). In the following, we shall use these data to demonstrate the relevance of the model presented in
the previous section, and to estimate quantitatively the turbulent mean free path �turb, and its dependence on the
electron energy.

3.1. Presentation of the data

Fig.7 presents an example of electron velocity distribution measured by PSP’s electrostatic analyzers (Whittlesey
et al. 2020). The top panel presents the di↵erential energy flux integrated over pitch angles, showing its energy
dependence. The first bump, around 6 eV, is due to the flux of photo and secondary electrons emitted by the
spacecraft or produced inside the instrument; the second, around 70 eV shows the thermal electron flux. At energies
above ⇠ 1 keV, the measured flux artificially flattens, as the physical particle flux decreases below the noise level of the
instrument. In this study, we shall therefore limit ourselves to energy channels comprised between 100 eV (above the
thermal level) and 1 keV, as marked by the dashed red lines on Fig.7. The middle panel shows the di↵erential energy
flux in the (vk = v cos ✓, v? = v sin ✓) plane. The plot was reconstructed from energy and pitch angle measurements,
and contains the full available information on the VDF (assuming gyrotropy around the magnetic field). The color
code goes from dark to light (blue to yellow) in logarithmic scale, and one can clearly see the presence of an anisotropy
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Figure 6. Distance dcol(E) beyond which the pitch angle distributions are shaped by the turbulent di↵usion mechanism alone,
i.e. they are practically indistinguishable from the distributions obtained without considering Coulomb collisions. The yellow
shaded region shows the region of the (s, E) plane where the e↵ect of Coulomb collisions on the pitch angle distributions is
noticeable. The solid line shows an exponential fit to the four data points corresponding to the four collisional curves presented
on Fig.5.

extended along the magnetic field direction in our range of energies. That said, the important variation of flux from
an energy channel to another hides the details of the anisotropy structure, and the study of the latter is better done
by looking at the fluxes normalized per energy bin. This is done in the bottom panel, which shows the contour levels
of

f̄(E, ✓) =
F (E, ✓)R ⇡

0 F (E, ✓) sin ✓d✓
(12)

where F (E, ✓) is the di↵erential energy flux presented in the middle panel. In a given energy channel, f̄(E, ✓) is just
the normalized pitch angle distribution that we have been modeling and discussing in the previous section. We can see
that this distribution is rather isotropic below the thermal energy, and that a strong anisotropy develops from around
100 eV (inner red dashed line). This anisotropy consists of the excess of field aligned electrons – the very visible strahl
– and to a corresponding depletion in the other directions. Energy-wise, the depletion starts at the same energy at
which the strahl appears (being its counterpart), that is, essentially at the energy at which the Coulomb collisions
are not e�cient enough to counterbalance the e↵ect of magnetic focusing and regulate the distribution’s isotropy: the
energy at which the electron behaviour transitions from thermal to non-thermal (Landi et al. 2012). At energies above
1 keV the distribution is dominated by the noise, and is thus isotropic. At slightly smaller energies, an increase of the
isotropy might be observed, together with an increase of the strahl angular width. This e↵ect may be related to a
decrease of the turbulent scattering mean free path at high energies, that will be discussed in following sections – but
it must be taken with care on this particular figure, since the interpolation of the (E, ✓) distribution function on the
(vk, v?) grid can produce artificial visual e↵ects.

3.2. Fitting the pitch angle distribution functions

Our goal is to determine the turbulent mean free path �turb from the data. In order to do so, we selected quiet
intervals of study, in which the observed distribution functions will be fitted to the results provided by the transport
model presented in Section 2, varying �turb as a free parameter. The intervals were selected manually, at di↵erent
distances from the Sun, as periods were the magnetic field measured by the FIELD fluxgate magnetometer (Bale
et al. 2016) is relatively constant and where the pitch angle distribution does not undergo strong fluctuations. Fig.
8 presents an example of such an interval. Note that all the pitch angles shown in this section are “outward pitch
angles”, as defined in Section 2.3. All selected intervals are presented in Table 1 in Appendix C.
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Figure 7. Top panel: di↵erential energy flux of solar wind electrons electrons measured by PSP around 0.17 AU. Middle panel:
contours of the logarithm of the di↵erential energy flux in the (vk = v cos ✓, v? = v sin ✓) plane. Bottom panel: contours of the
logarithm of the di↵erential energy flux normalized in each energy bin (cf. text) in the (vk, v?) plane. On all panels, the dashed
red lines show the limits of our interval of study, 100 eV < E < 1 keV.
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Figure 8. Top panel: normalized outward pitch angle distribution as a function of time. Red dots mark an inversion of the
magnetic field polarity. Middle panel: radial component of the magnetic field as a function of time (blue and red indicate
negative and positive polarity, respectively). Bottom panel: angle between the magnetic field vector and the radial vector. On
all panels, the dashed lines delimit the selected interval of study. Data are from PSP SPAN-E and MAG experiments.

For each of the selected intervals, the pitch angle distribution was averaged in time, normalized and then compared
to the results of the numerical integration of the transport equation. For this purpose, the numerical integration of
eq.(4) was performed for 19 values of the turbulent mean free paths ranging in �turb = 0.01 � 3.5 AU, and a Parker
spiral scale of r⇤ = 1 AU. The integrations were performed using N = 105 pseudo-particles initialized as an isotropic
distribution at s0 = 0.01 AU, and the phase space distribution f(✓, s) was computed on a N✓ ⇥ Ns = 30 ⇥ 50 grid,
corresponding to a resolution of �✓ = 6� and �s = 0.06 AU. This corresponds to a total of 19⇥ 50 = 950 numerically
obtained pitch angle distributions. For each of those, the squared-residuals defined as

R2(�turb, s) =
1

N✓

N✓X

i=1

�
f̄�turb,s(✓i)� f̄obs(✓i)

�2
(13)

were computed. Here f̄�turb,s(✓i) is the theoretical normalized distribution function obtained from eq.(4), and f̄obs(✓i)
the observed distribution. ✓i is the center value of the i-th pitch angle bin. Since the bins of the simulations and the
observations were not matching, the observed and simulated distributions were linearly interpolated on the same pitch
angle grid for the purpose of calculating R2. The best least-square fit corresponds, by definition, to the value of the
parameters couple (�turb, s) that minimizes R2.
The bottom panel of Fig.9 presents R2(�turb, s) in color plot. One can note the existence of an “R2 valley” in the

(�turb, s) plane. This degeneracy stems from the fact that increasing �turb while keeping s constant or increasing s
with �turb constant have similar e↵ect of increasing the width of the distribution function – more technically, as �turb is
here a constant, eq.(4) can be expressed only as a function of the normalized distance � = s/�turb and of the function
Kn(�). Because of this degeneracy, it will frequently occur that the absolute minimum of R2(�turb, s) occurs for a
value of the position s not matching with the actual position of the spacecraft when the measurement was performed –
inducing a strong error on the estimated value of �turb. Fig.9 presents a rather extreme example of such a behaviour,
using measurements from SolO/SWA/EAS. Here, the minimum of R2 occurs at s ' 1.6 AU and �turb ' 3.25 AU,
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Figure 9. Top panel: normalized outward pitch angle distribution averaged over the selected time interval, as measured by
SolO (histogram), together with the absolute best fit (black curve) and the best fit at SolO’s position when the measurement
was done (red curve). Bottom panel: Values of the squared-residuals are shown in the (�turb, s) plane in log-color scale. The
position of the absolute minimum of R2 is shown by a white cross. SolO’s position is shown as a vertical red line, and the
minimum at SolO’s position as a red point.

whereas SolO was at 0.9 AU (shown by the vertical red line) when performing the measurement. In order to overcome
this problem, the best value of �turb retained was the one minimizing R2 at the position of the spacecraft during the
measurement. The top panel of Fig.9 shows the distribution measured by SolO, together with the absolute best fit
(black curve) and the best fit at SolO’s position (red curve). The value retained here is �turb = 1.5 AU. The similarity
between the black and red curves illustrate the degeneracy just discussed.
Fig.10 concludes this section on the fitting of the data by presenting data measured by PSP/SWEAP/SPAN-E in

the same energy bin, at three di↵erent distances from the Sun. The typical behaviour is illustrated, with an increase of
the halo level, and a broadening of the angular distribution with increasing radial distance. All of these plots present
an excellent agreement between the data and the solutions of eq.(4), on the whole 0��180� pitch angle range, obtained
by varying the only free parameter �turb. This leaves little doubt that the electron distributions functions observed
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in the solar wind are indeed determined by the processes described in Section 2: a competition between magnetic
mirroring and a turbulent scattering mechanism acting even far away from the Sun, with a rather constant mean free
path.

3.3. The turbulent mean free path as a function of energy

Figs.11, 12 and 13 show the values of �turb determined using the fitting procedure described in the previous section.
On figs. 11 and 12, �turb is plotted as a function of the energy in eight di↵erent intervals (four for each spacecraft),
corresponding to eight di↵erent distances from the Sun. On Fig.13, it is plotted as a function of distance in four
di↵erent energy channels, for all selected intervals. Since the energy channels of SolO/SWA and PSP/SWEAP do not
match exactly, the closest channels were selected to produce the figure.
We can observe that the turbulent scattering mean free path is of the order of the astronomical unit, and does not

depend strongly on the energy – the energy dependence observed close to the Sun at low energies being due to the
non-negligible e↵ect of the Coulomb collisions in the yellow-shaded region (as defined by Fig.6). A decrease of the
mean free path seems to be occurring in the higher energy bins of several of the selected intervals. This e↵ect will
have to be confirmed, and further studied, in future works.
We also note some variability of �turb from an interval to another, even for intervals within close distance. This is

particularly striking in the distance range from 0.5 to 0.8 AU, where the distribution of �turb spreads from 0.1 to 3.5
AU. This variability is likely to be explained by a dependence of the scattering mechanism on parameters specific to
the solar wind flux tube in which the electrons are propagating, which can strongly vary from an interval to another.
A parametric study of how �turb correlates to these parameters is beyond the scope of this paper, but should be
undertaken in the future. Parameters known to influence the strahl pitch angle width, as the plasma � (Berčič et al.
2019), the level of magnetic fluctuations (Pagel et al. 2007), the magnetic field amplitude and solar wind speed (Owen
et al. 2022), amongst others, should be considered.
This variability is illustrated in a particular manner by the events noted with a (*) in Table 1, as for instance the one

recorded at 0.53 AU by SolO, and appearing on the lower-mid panel of Fig.12. The turbulent mean free path derived
goes in this case up to the maximum value retained for the numerical integrations �turb = 3.5 AU, and saturates there
for a few energy channels. Such an interval exhibits very weak di↵usion, and could be labeled as “scatter-free” – as is
done for solar energetic particles events, for which weakly di↵usive behaviours are also commonly observed (Lin 1970,
1974). In this event the mean free path clearly increases with energy from the lowest energies to somewhere around 400
eV: for such an event the strahl angular width decreases with increasing energy up to around 400 eV, before increasing
again. This is consistent previous studies of the strahl pitch angle width, in particular the recent one by Berčič et al.
(2019), where a decrease of the pitch angle-width with energy is sometimes observed, but where, more generally, the
strahl angular width seems mostly independent of the energy (just as �turb is, for most intervals, independent of the
energy in ours).

4. CONCLUSIONS AND IMPLICATIONS

In this paper, it has been shown that the electron pitch angle distributions observed in the solar wind can be
convincingly reproduced under the main assumption that there exists a scattering mechanism that acts on electrons
with a mean free path �turb that does not – or weakly – depend on the distance from the Sun. In particular, the region
in which the scattering mechanism is active must extend to large heliospheric distances (a few astronomical units at
least) to explain the isotropic component of the distribution observed at closer distances. We note that the analysis
presented in this paper on the basis of a constant turbulent mean free path should stay valid, at least qualitatively,
even if �turb is a function of the position, provided that it increases with distance less fast than LB does, so that
Kn ! 0 at large distances.
The value of this turbulent scattering mean free path has been derived from PSP and SolO observations; it is shown

to be of the order of the astronomical unit, and to not depend much on the electron’s energy. A complete parametric
study of the dependence of �turb on the characteristics of the solar wind flux tube in which the electrons are propagating
remains to be done, and should be the purpose of forthcoming works.
The existence of this turbulent scattering mechanism induces a division of the heliosphere into three regions: a

first low Knudsen number layer close to the Sun, where the electron dynamics is dominated by Coulomb collisions,
an intermediate high Kn layer, where the dynamics is essentially deterministic and dominated by magnetic focusing,
and a most external low Kn region, where the dynamics of the electrons is rather random again, and dominated by
turbulent scattering.
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Figure 10. Best fits obtained for PSP data in the energy channel 314.5 eV, for increasing distances from the Sun, from top to
bottom. The absolute best fit and best fit at PSP are presented with the same color code as Fig.9.

This provides a clear explanation of the origin of the isotropic component of the electron velocity distribution,
observed even at relatively close distances from the Sun, where Kn � 1. It is shown that this halo is not locally
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Figure 11. Values of the turbulent mean free path �turb derived from data fitting, as a function of the electron energy. The four
panels show results obtained on four PSP study intervals. The yellow shaded regions correspond to the region where Coulomb
collisions play a significant role in shaping the distribution function.

produced, but consists of particles with a complex history, having been scattered and isotropized in the “region III”
before being introduced back in the “region II” where they are observed. A consequence is that the level of halo cannot
be expected to depend on local parameters, but is related to the values of Kn at distances potentially very di↵erent
from the one where it is observed: the halo is in this sense an intrinsically non-local feature.
The electron strahl, on the other hand, is shown to consist in electrons with a rather simple history: they stream out

from the Sun and get slightly scattered as they travel out through the “region II”. It constitutes the local component
of the electron velocity distribution function, in the sense that its characteristics depend only on the values of the
fields LB(s) and �(s) between the Sun and its observation point.
The existence of this turbulent scattering mechanism has some interesting implications: for instance the existence

of run-away electrons in the solar wind, in the strict sense, is questionable, since the electron mean free path does
not unboundedly increase with energy. Under the action of a DC electric field E, electrons with a velocity above the
“run-away limit” v ⇠

p
ER/Evth, where ER is the Dreicer field (Dreicer 1959; Gurevich 1961), will then see their

energy increase only until they reach a maximum energy ✏ ⇠ eE�turb (assuming here that �turb is independent of the
energy). After this point they should undergo a rather standard friction force, evolve at constant mean velocity and
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Figure 12. Values of the turbulent mean free path �turb derived from data fitting, as a function of the electron energy. The four
panels show results obtained on four SolO study intervals. The yellow shaded regions correspond to the region where Coulomb
collisions play a significant role in shaping the distribution function.

dissipate the electric field energy through Joule e↵ect. A rough order of magnitude of this maximum energy ✏ in the
interplanetary medium, assuming E ⇠ kTe/eL, is ✏ ⇠ mv2the�turb/L ⇠ Kn ⇥ kTe. This can probably reach values of
the order of 10 kTe in the “region II”, and much less further away from the Sun (but quite more for “scatter-free” flux
tubes).
Another interesting question raised is related to the nature of heat transport in the solar wind. It is indeed well-

known that solar wind’s heat-flux is in an important proportion carried by suprathermal particles – e.g. (Marsch
2006; Salem et al. 2023). The friction force on those being exerted through some turbulent scattering process rather
than Coulomb collisions should have implications on the expression of the heat conductivity – although a local heat
transport theory is not really expected to hold in high Kn regions (Scudder & Karimabadi 2013), some local behaviour
may be expected far away enough from the Sun, in the “region III” – and to the interpretation to be given to the heat
conduction.
The previous considerations raise, of course, the central question of what is the process responsible for the turbulent

scattering. Two main candidates seem to arise: the first is the interaction of suprathermals with coherent wave-packets,
typically whistlers, which may for instance be triggered by heat-flux instability (Micera et al. 2020). They are known
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Figure 13. Values of the turbulent mean free path �turb derived from data fitting, as a function of the distance from the Sun.
Black points correspond to PSP intervals, red ones to SolO intervals. The four panels show four energy channels, the values of
which are indicated on the top right corner (black: PSP and red: SolO). The dotted horizontal lines show the average value of
�turb in each energy channel (excluding the points in the yellow regions). The yellow shaded regions correspond to the region
where Coulomb collisions play a significant role in shaping the distribution function.

to produce pitch angle scattering and are frequently observed in the solar wind – although they seem to be lacking
in the fast wind and close to the Sun (Jagarlamudi et al. 2020; Kretzschmar et al. 2021; Cattell et al. 2022). The
question of whether their space and energy distribution may provide the observed scattering mean free path remains
to be carefully studied, and clearly provides a path to explore.
The second main candidate to produce the scattering is the background interplanetary magnetic field turbulence.

Its e↵ect has been the topic of an extended literature in the field of cosmic rays and solar energetic particles transport,
from Jokipii (1966) to more recent theoretical works, e.g.(Schlickeiser 2011). The observations of low rigidity cosmic
rays di↵usion profiles (Palmer 1982; Dröge et al. 2018) provide estimation of mean free paths of the order of the AU or
a bit smaller, weakly dependent on the particle’s energy in agreement with the present study. The consistency of these
observations with predictions from quasi-linear theory is not clear, especially in the slab-turbulence approximation,
and have been the subject of a long-standing debate. However, an estimation of the scattering mean free path due to
the interaction with the compressive turbulence by Goldstein (1980) provides a good order of magnitude (⇠ 0.5 AU)
and an energy-independent behaviour for �turb.
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We conclude by noting that, of course, the action of another not yet envisaged scattering mechanism cannot be
excluded, neither the fact that di↵erent mechanisms may be dominent in di↵erent plasma conditions, energy ranges
or distances from the Sun.

APPENDIX

A. NUMERICAL METHOD FOR SOLVING THE TRANSPORT EQUATION

The transport equation was solved using a Monte-Carlo method, in a standard way to solve Fokker-Planck equations.
Such numerical methods were already used to solve transport equations in the context of solar physics, for instance
by Je↵rey et al. (2014) or Dröge et al. (2018). We first note that eq.(4) is equivalent to the following Fokker-Planck
equation for the distribution function g(µ, s) = f(µ, s)/B(s):
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Then we note that as a direct consequence of the Itô theorem (Allen 2007), the random variables (µ̃, s̃) are distributed
according to the probability distribution g(µ, s) solution of eq.(A1) if they are themselves solutions of the following
system of stochastic di↵erential equations

ds̃ = µ̃vdt (A2)

dµ̃ =

✓
(1� µ̃2)v

2LB(s̃)
� ⌫µ̃

◆
dt+

p
(1� µ̃2)⌫dW (A3)

whereW (t) is the Wiener process (i.e. the one dimensional continuous random walk with normal transition probability).
This set of stochastic di↵erential equations can obviously be interpreted as the equation of motion of pseudo-particles
undergoing a deterministic trajectory (here determined by magnetic focusing only), together with small random an-
gular deflections of their velocity vector. The Monte-Carlo method consists in solving the system (A2)-(A3) for a
large number N of pseudo-particles, and then to reconstitute the distribution function g(µ, s) from the trajectories
(µ̃i, s̃i)i=1...N .
The results presented in the article are obtained through the integration of the stochastic di↵erential equations for

N pseudo-particles (the value of N is specified in the main text where needed), using an Euler-Maruyama numerical
scheme (Kloeden & Platen 1999), on a total integration time T . The time step�t for the numerical integration was cho-
sen so that it can resolve the fastest process in play : ⌫max�t = 5⇥ 10�2, where ⌫max = max [v/LB(s); v/�turb; ⌫c(s)],
�turb being the turbulent scattering mean free path and ⌫c(s) the Coulomb collision frequency (when taken into ac-
count, ⌫c = 0 otherwise). Finally, let us note that we are interested, in this article, in steady-state solutions (@t ⌘ 0)
that, strictly speaking, could only be reached by computing the trajectories over a time T ! 1. To overcome this
problem, we considered a simulation domain s 2 [0, 3] AU, and ran the simulation on a time T long enough for the
phase space distribution to have converged over this simulation domain. This value was empirically determined to be
of the order of T ⇠ 300�turb/v.

B. MAGNETIC FOCUSING AND KNUDSEN NUMBER IN A PARKER SPIRAL MAGNETIC FIELD

We consider a parker spiral magnetic field B in its simplest form, given by eq.(8), parametrized by the single
parameter r⇤. The relation between the curvilinear coordinate s and the radius r from the Sun at which an electron
is observed is the length of the spiral arm between ⇠ 0 and r:

s(r) =

Z r

0

s

1 +
r02

r2⇤
dr0 =

1

2

 
r

s

1 +
r2

r2⇤
+ r⇤ sinh

�1 r

r⇤

!
, (B4)

from which we have the useful limiting cases s(r ⌧ r⇤) ⇠ r and s(r � r⇤) ⇠ r2/2r⇤. The logarithm of the magnetic
field modulus as a function of the radial coordinate r is

lnB(r) = �2 ln r +
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The focusing length at distance r from the Sun can be calculated from these two equations:

LB(r) = �

✓
d lnB

dr

◆�1 ds

dr
=

p
1 + r2/r2⇤

2/r � r/(r2⇤ + r2)
. (B6)

LB(s), the function involved in the transport equation (4), is calculated as LB(r(s)), where r(s) is found by inverting
eq.(B4). There is no simple analytical form for r(s), and the evaluation of this function, when needed for the numerical
integration of the transport equation, was realized through a Newton-Raphson algorithm. Still, useful analytical forms
for the focusing length can be found in limiting cases of large and small values of r. Using eq.(B6) and the limiting
cases for s(r) shown above, we easily obtain that

LB(r ⌧ r⇤) ⇠ s/2, LB(r � r⇤) ⇠ 2s. (B7)

The asymptotic behaviour of LB(s) is then linear in both cases, with di↵erent coe�cients. The e↵ect of the Parker
spiral therefore appears as a multiplication by a factor of 4 of the focusing length (a division by 4 of the Knudsen
number) at large distances from the Sun compared to a purely radial field (for which LB(s) = s/2 at all distances). If
this e↵ect does not change qualitatively the physical picture, it plays a role in the observed distribution functions by
increasing the density of the isotropic component (halo) at all distances from the Sun, compared to what would be
observed for a purely radial field (that would produce quite lesser quality fittings in Section 3).

The Knudsen number in a Parker spiral is directly found from eq.(B6),

Kn(r) =
�(r)/r � �(r)r/(r2⇤ + r2)p

1 + r2/r2⇤
, (B8)

which can be expressed as a function of s by inverting eq.(B4). In the limiting cases of small and large r, the Knudsen
number can be approximated by Kn(r ⌧ r⇤) ⇠ 2�/s and Kn(r � r⇤) ⇠ �/2s. Finally the locality condition (7) takes
the form

Kn ⌧
2r2⇤ + r2p

2r4⇤ + 7r2⇤r
2 + 2r4

, (B9)

which reduces, close to the Sun (r ⌧ r⇤), to Kn ⌧
p
2, and far away from the Sun (r � r⇤), to Kn ⌧ 1/

p
2.
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C. INTERVALS OF STUDY FOR THE PITCH ANGLE DISTRIBUTIONS FITTINGS.

Table 1. Intervals of study.

Interval Start date End date Min. distance Max. distance Number of samples Spacecraft

Number YY-MM-DD HH:MM:SS YY-MM-DD HH:MM:SS (AU) (AU) Number Name

0 19-08-31 00:04:10 19-08-31 10:03:57 0.172 0.176 2575 PSP

1 19-09-05 10:04:11 19-09-05 20:03:58 0.208 0.216 2575 PSP

2 19-09-07 22:04:04 19-09-08 08:03:51 0.261 0.271 2575 PSP

3 19-09-12 12:10:07 19-09-13 08:03:09 0.364 0.381 81 PSP

4 19-09-17 17:07:31 19-09-18 03:04:02 0.468 0.476 41 PSP

5 19-09-22 07:50:04 19-09-22 21:25:36 0.549 0.558 65 PSP(*)

6 19-10-02 11:05:04 19-10-02 22:56:13 0.692 0.697 91 PSP

7 20-01-27 01:05:43 20-01-27 11:05:30 0.151 0.160 2575 PSP

8 20-02-06 01:20:24 20-02-06 11:02:01 0.298 0.308 40 PSP

9 20-02-11 18:17:32 20-02-12 03:59:08 0.429 0.437 40 PSP

10 20-06-09 07:05:44 20-06-09 17:05:31 0.152 0.160 2575 PSP

11 20-06-13 22:05:50 20-06-14 08:05:37 0.267 0.281 2575 PSP

12 20-10-01 19:05:44 20-10-02 05:05:38 0.213 0.226 5150 PSP

13 20-02-19 09:13:34 20-02-19 23:53:27 0.567 0.577 60 PSP

14 20-02-28 11:12:22 20-02-29 00:52:35 0.689 0.695 56 PSP

15 20-05-12 14:50:11 20-05-12 20:03:22 0.632 0.635 22 PSP

16 22-01-29 00:01:33 22-01-29 06:01:13 0.870 0.872 2129 SolO

17 22-03-03 05:01:08 22-03-03 15:00:58 0.544 0.549 3600 SolO(*)

18 22-03-06 23:01:08 22-03-07 09:00:59 0.497 0.502 3570 SolO

19 22-03-28 00:01:22 22-03-28 06:01:02 0.324 0.325 2129 SolO

20 22-04-30 00:01:37 22-04-30 09:58:37 0.680 0.684 3583 SolO(*)

21 22-05-03 00:01:37 22-05-03 04:01:17 0.711 0.713 1439 SolO

22 22-05-08 00:01:28 22-05-08 09:58:38 0.760 0.764 3584 SolO(*)

Note—SC(*) in the last column indicates a “scatter-free” event.
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